LOW NOX CONTINUOUS EMISSIONS MEASUREMENTS FROM GAS TURBINES Allan Budd & Tom Baldwin Baldwin, Inc. 2003 Conference on SCR and SNCR for NOx Control, Pittsburgh PA October 30, 2003 BALDW ## Background - CARB Low NOx Committee - UC Riverside CE-CERT Low NOx Study - Dow Chemical Project (Gluck et. al.) - GE N0x Analyzer Study - Horiba Low NOx study (Downey et. al.) - Baldwin Low NOx projects (Budd/Baldwin) - USEPA method update (Harrison et. al.) #### ssues - Can a CEMS measure NOx at 1-10 ppmv in the real world? - Can a CEMS measure NH₃ with sufficient accuracy for compliance or control? - What must change in system design? - What must change in O & M to make the accuracy sustainable? - What must change in Reference Methods and stack testing procedures to support low NOx? - What must change in monitoring equipment to enable low NOx (and NH₃₎ measurement? ## Systems Approaches #### Dilution - - Concentrations too low for practical accurate measurements - Systems cost - Doesn't eliminate NH₃ contamination - Wet basis, requires water measurement (system bias) #### Hot/Wet - Doesn't eliminate NH₃ contamination - Heated analyzers cost - Wet basis, requires water measurement (system bias) #### **Conventional Extractive** - Results show excellent accuracy - Dry basis - Same as reference method - Ease of certification - Direct reporting - No water measurement biases - Simpler system design - Lower N0x bias further by moving N0x Converter to sample point - Reduces bias from NO₂ loss - Makes system maintenance less critical #### Standard Test Conditions - NO/NO₂: variable 1-15 ppm - Ammonia : 0–15 ppm - CO₂ : 0-5% vol - Water: 10% vol # Impinger Material Effects On NO₂ Absorption # NO₂ Transport Through Sample Cooler NO2 IN NO2 OUT — Linear (NO2 IN) — Linear (NO2 OUT) ## NO₂ Loss: Impact on Certification Accuracy → Nox Accuracy @ 1ppm Cert → NO2 Recovery BALDWIN #### Conclusions: NOx Only - Down to 1ppm with up to $70\% \text{ NO}_2$ is measurable to better than $\pm 5\%$ - Must use Low NOx components in system - System must be kept "Low NOx" clean - Chemi Analyzer must not have CO₂ error - High NOx exposure will bias results in a conventional system design - Stack tester - Low NOx Reference System - Low NOx measurement familiarity #### Reduce "Sensitivities" - NO₂ is the sensitive point - Permeates Sample line - > Soluble in water (accounts for cooler loss) - Chemically reactive - System components - Clean sample line - Treated sampling system components (Durinert) ## Eliminate NO₂ Biases: Do Conversion at the Sampling Point - Eliminates NO₂ bias - High levels of NO₂ @ startup/shutdown - Loss in sample line - Loss in water removal system - Converter issues - >>95% conversion efficiency @ 2 l/min - Reliable less maintenance than sample filter - Can be adapted to NH₃ measurement ## On Stack NO₂ Conversion: Improvement in Relative Accuracy - → NO2 Loss With On Stack Conversion → Relative Accuracy - Relative Accuracy -L-NO2 Absorption ## Add an SCR (NH₃) - NOx Biases - Variable NO₂ Losses NH₃ + NO₂ - Analyzer sample cell contamination - Sample line contamination - Variable NH₃ Losses up to 100% - Presence of acidic gases (CO₂, SO₂, NO₂...) - Sample line #### NOx Measurement with SCR - Remove NH₃ at sample point for NOx only - Minimizes system contamination - Eliminates NH₃ interference - $-NH_3 + O_2 = NO$ in typical NOx converter - Even with carbon converter, NH₃ contamination is an issue - Must deal with NH₃ Scrubber issues - > H₃PO₄ is most reliable system - NO₂ Loss #### Ammonia Scrubber - Eliminates usual NH₃ Scrubber problems - > 90°C operation eliminates condensate issue - Does remove 12% of NO₂ - Our data shows this is repeatable from 0.5–15 ppm NO₂ - Not an issue in normal turbine operation where NO₂ is only 5-20% of NOx (@10% NO₂, 12% loss is only a 1.2% bias in the NOx value) - ▶ If 12% NO₂ loss is an issue, NO₂ Selective Converter in front of scrubber eliminates problem #### On Stack Converter Performance - Inconel/stainless converter - > NO₂: 97.3% @ 2 l/min - > NH₃: >90% @ 2 l/min - Synergistic NOx/NH₃ effect - Low temperature carbon converter - > NO₂: 98% @ 2 l/min - NH₃: <1% @ 2 l/min</p> # NOx Measurement Conclusion - Certifiable NOx measurements are possible with conventional extractive systems down to 1ppm NOx even with high NO₂ present and in the presence of low ppm NH₃ - Errors/Biases can be reduced by conversion of NO₂ to NO at the sampling point - Ammonia can be reliably removed as an interferent when SCR's are in use